Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Pathogens ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: covidwho-2230376

ABSTRACT

Since late 2019 and early 2020, with the emergence of the COVID-19 pandemic, scientists are rushing to develop treatment and prevention methods to combat SARS-CoV-2. Among these are vaccines. In view of this, the use of animals as experimental models, both to investigate the immunopathology of the disease and to evaluate the efficacy and safety of vaccines, is mandatory. This work aims to describe, through recent scientific articles found in reliable databases, the animal models used for the in vivo testing of COVID-19 vaccines, demonstrating some possibilities of more advantageous/gold-standard models for SARS-CoV-2 vaccines. The majority of the studies use rodents and primates. Meanwhile, the most adequate model to be used as the gold standard for in vivo tests of COVID-19 vaccines is not yet conclusive. Promising options are being discussed as new tests are being carried out and new SARS-CoV-2 variants are emerging.

2.
Immunology ; 167(2): 124-138, 2022 10.
Article in English | MEDLINE | ID: covidwho-2229084

ABSTRACT

Vaccines are the most effective tool to control infectious diseases, which provoke significant morbidity and mortality rates. Most vaccines are administered through the parenteral route and can elicit a robust systemic humoral response, but they induce a weak T-cell-mediated immunity and are poor inducers of mucosal protection. Considering that most pathogens enter the body through mucosal surfaces, a vaccine that elicits protection in the first site of contact between the host and the pathogen is promising. However, despite the advantages of mucosal vaccines as good options to confer protection on the mucosal surface, only a few mucosal vaccines are currently approved. In this review, we discuss the impact of vaccine administration in different mucosal surfaces; how appropriate adjuvants enhance the induction of protective mucosal immunity and other factors that can influence the mucosal immune response to vaccines.


Subject(s)
Immunity, Mucosal , Vaccines , Adjuvants, Immunologic , Mucous Membrane , Vaccination
3.
Pathog Dis ; 80(1)2022 10 19.
Article in English | MEDLINE | ID: covidwho-2062894

ABSTRACT

Adjuvants are important components of vaccines, increasing immunogenicity and modulating the immune response. SARS-CoV-2 vaccines are still being developed in order to improve worldwide access to immunization. Specific populations should be addressed in these investigations, such as pregnant women-to protect both mothers and neonates. In this study, female adult mice were immunized with Receptor-binding domain (RBD) from SARS-CoV-2 adjuvanted by a mixture of DDA and Saponin and put to mating to verify the maternal transference of IgG. For comparison, other group received RBD adjuvanted by OMVs from Neisseria meningitidis and Alum. The adjuvants enhanced IgG production and neutralization. DDA/Sap contributed to increase IgG1, IgG2a, IgG2b, and IgG3 isotypes. Total IgG avidity was considered high, as well as IgG1, IgG2a, and IgG2b avidity. IgG antibodies were effectively transferred to the offspring, predominantly IgG2a, IgG2b, and IgG3. The passive transferred immunoglobulin maintained the neutralizing ability, although it lost avidity. ELISA data was confirmed in Dot-ELISA and immunoblotting assays. DDA and Saponin seem a promising adjuvant mixture to enhance the humoral response of SARS-CoV-2 antigens. Further studies considering the effects of maternal immunization in the protection of offspring are needed, regardless the platform used in COVID-19 vaccines.


Subject(s)
COVID-19 , Saponins , Pregnancy , Mice , Female , Humans , Animals , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Adjuvants, Immunologic , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
5.
J Clin Med ; 11(6)2022 Mar 09.
Article in English | MEDLINE | ID: covidwho-1732093

ABSTRACT

The Enzyme-Linked Immunosorbent Assay is a versatile technique, which can be used for several applications. It has enormously contributed to the study of infectious diseases. This review highlights how this methodology supported the science conducted in COVID-19 pandemics, allowing scientists to better understand the immune response against SARS-CoV-2. ELISA can be modified to assess the functionality of antibodies, as avidity and neutralization, respectively by the standardization of avidity-ELISA and surrogate-neutralization methods. Cellular immunity can also be studied using this assay. Products secreted by cells, like proteins and cytokines, can be studied by ELISA or its derivative Enzyme-linked immunospot (ELISpot) assay. ELISA and ELISA-based methods aided the area of immunology against infectious diseases and is still relevant, for example, as a promising approach to study the differences between natural and vaccine-induced immune responses against SARS-CoV-2.

6.
J Med Virol ; 94(1): 178-185, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544336

ABSTRACT

Many aspects of the humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as its role in protection after natural infection, are still unclear. We evaluated IgA and IgG response to spike subunits 1 and 2 (S1 and S2) and Nucleocapsid proteins of SARS-COV-2 in serum samples of 109 volunteers with viral RNA detected or seroconversion with different clinical evolution (asymptomatic, mild, moderate, and severe coronavirus disease 2019), using the ViraChip® Test Kit. We observed that the quantification of antibodies to all antigens had a positive correlation to disease severity, which was strongly associated with the presence of comorbidities. Seroreversion was not uncommon even during the short (median of 77 days) observation, occurring in 15% of mild-asymptomatic cases at a median of 55 days for IgG and 46 days for IgA. The time to reach the maximal antibody response did not differ significantly among recovered and deceased volunteers. Our study illustrated the dynamic of anti-S1, anti-N, and anti-S2 IgA and IgG antibodies, and suggests that high production of IgG and IgA does not guarantee protection to disease severity and that functional responses that have been studied by other groups, such as antibody avidity, need further attention.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Middle Aged , Phosphoproteins/immunology , Seroconversion , Young Adult
7.
Sci Rep ; 11(1): 17642, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1392880

ABSTRACT

SARS-CoV-2 is considered a global emergency, resulting in an exacerbated crisis in the health public in the world. Although there are advances in vaccine development, it is still limited for many countries. On the other hand, an immunological response that mediates protective immunity or indicates that predict disease outcome in SARS-CoV-2 infection remains undefined. This work aimed to assess the antibody levels, avidity, and subclasses of IgG to RBD protein, in symptomatic patients with severe and mild forms of COVID-19 in Brazil using an adapted in-house RBD-IgG ELISA. The RBD IgG-ELISA showed 100% of specificity and 94.3% of sensibility on detecting antibodies in the sera of hospitalized patients. Patients who presented severe COVID-19 had higher anti-RBD IgG levels compared to patients with mild disease. Additionally, most patients analyzed displayed low antibody avidity, with 64.4% of the samples of patients who recovered from the disease and 84.6% of those who died in this avidity range. Our data also reveals an increase of IgG1 and IgG3 levels since the 8th day after symptoms onset, while IgG4 levels maintained less detectable during the study period. Surprisingly, patients who died during 8-14 and 15-21 days also showed higher anti-RBD IgG4 levels in comparison with the recovered (P < 0.05), suggesting that some life-threatening patients can elicit IgG4 to RBD antibody response in the first weeks of symptoms onset. Our findings constitute the effort to clarify IgG antibodies' kinetics, avidity, and subclasses against SARS-CoV-2 RBD in symptomatic patients with COVID-19 in Brazil, highlighting the importance of IgG antibody avidity in association with IgG4 detection as tool laboratory in the follow-up of hospitalized patients with more significant potential for life-threatening.


Subject(s)
Antibodies, Viral , Antibody Affinity , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Brazil/epidemiology , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
9.
Hum Vaccin Immunother ; 17(9): 2965-2968, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1216574

ABSTRACT

Although COVID-19 vaccines have recently been approved for emergency use, search for new vaccines are still urgent, since the access of the countries, especially the poorest, to the vaccines, has shown to be slower than the necessary to rapidly control the pandemic. We proposed a novel platform for vaccine using recombinant receptor binding domain (rRBD) from Sars-Cov-2 spike protein and Neisseria meningitidis outer membrane vesicles (OMVs). The antigen preparation produced a humoral and cellular immune response. Taken together our findings suggest a good immunostimulatory patter in response to immunization with rRBD plus N. meningitidis OMV.


Subject(s)
COVID-19 , Meningococcal Vaccines , Vaccines , Bacterial Outer Membrane Proteins , COVID-19 Vaccines , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL